Esercizio 9: soluzione

Dovendo calcolare la:

 \Delta V = \sqrt{3},\Big(R_{2eq}\cos\varphi + X_{2eq}\sin\varphi\Big)\cdot I_2

Sul lato BT si hanno: V_2 = 0{,}4\ \text{kV} = 400\ \text{V}

 S_{2n} = \sqrt{3},V_{2n}I_{2n} \quad \Longrightarrow \quad I_{2n} = \frac{S_{2n}}{\sqrt{3},V_{2n}} = \frac{150000}{\sqrt{3}\cdot 400} = 216{,}5\ \text{A}

 R_{2eq} = \frac{P_{cc}}{3 I_{2n}^2} = \frac{2000}{3\cdot 216{,}5^2} = 0{,}0142\ \Omega

 Z_{2eq} = \frac{V_{cc}}{\sqrt{3} I_{2n}} = \frac{\tfrac{V_{cc\%}}{100},V_{2n}}{\sqrt{3},I_{2n}} = \frac{\tfrac{5}{100}\cdot 400}{\sqrt{3}\cdot 216{,}5} = 0{,}053\ \Omega

 X_{2eq} = \sqrt{Z_{2eq}^2 - R_{2eq}^2} = \sqrt{0{,}053^2 - 0{,}0142^2} = 0{,}051\ \Omega

Quindi:

 \cos\varphi_2 = 0{,}9 \quad\Rightarrow\quad \varphi_2 = 25{,}8^\circ \quad\Rightarrow\quad \sin\varphi_2 = 0{,}435

 \Delta V = \sqrt{3},\Big(R_{2eq}\cos\varphi_2 + X_{2eq}\sin\varphi_2\Big)\cdot I_2 = \sqrt{3},(0{,}0142\cdot 0{,}9 + 0{,}051\cdot 0{,}435)\cdot 216{,}5 = 13{,}2\ \text{V}

 \Delta V\% = \frac{\Delta V}{V_2}\cdot 100 = \frac{13{,}2}{400}\cdot 100 = 3{,}3\%